Top 10 NLP Interview Questions

As an IT professional, you may want to upskill in relevant technologies, and the best way is to register for online courses. If Artificial Intelligence (AI) and its applications fascinate you, learning AI, Machine Learning (ML), and Natural Language Processing (NLP) would be the natural progression to a lucrative career. You may like to design intelligence applications and models to solve various business problems.

NLP is increasingly being used along with AI and ML in various use cases across industries. The Google Translate application is one such use of NLP. As a subdomain of AI, NLP enables a machine to understand how humans speak and write in their everyday lives and leverage it for customer satisfaction and higher sales.

With NLP gaining popularity because of task automation and cognizance of man- to-machine translation, NLP is here to stay for a long time. So consider the option to become an NLP Research Engineer, Machine Learning Engineer, an AI Engineer, or Data Scientist and explore given the vast opportunities in these career domains.

A good way would be to check out the many online courses in US and prepare for a knowledge path in NLP.

Top 10 NLP interview questions

Here is a list of NLP research engineer interview questions that will help you ace NLP Interviews for a job profile requiring NLP knowledge.


1. How would you define NLP?

Natural Language Processing (NLP) is an application that helps the machine understand natural languages and extract the necessary information for the desired action. It gives computers the ability to comprehend text and spoken words in the same way human beings can.

2. Differentiate between NLP and NLU

NLP deals with naturally processing the text, as in what was said. NLU or Natural Language Understanding does just that, extracts the context and intent, i.e. fathoms what was meant.

NLP takes voice commands in the literal sense, but NLU uses intelligence to draw the inference that the user meant.

NLP can process text from grammar, structure, typo, and point of view, but NLU helps the machine to surmise the intent behind the language text. And this is what sets them apart.


3 What are some applications of NLP?

Common applications are:

      Email filters.

      Smart Assistants

      Voice Search

      Predictive text

      Language translation

      Auto-completion in Search Engines


      Text classification

      Question Answering

      Sentiment Analysis


4. What is Text Preprocessing? Name the different types of Text Preprocessing?

Text preprocessing is the first step in the process of building a model. It is a method for cleaning and preparing text data to make it usable, predictable, and analyzable for a specific task.

The three major types are:

Tokenization: It is the process of dividing groups of texts into smaller chunks or tokens. For instance, paragraphs are tokenized into sentences, and sentences are tokenized into words.

Normalization: The database is converted into a series of normal forms to normalise the data and make the Machine Learning algorithm simpler. For instance, converting all words to lowercase.

Noise Removal: It is a process of cleaning up the text by removing unnecessary characters, such as white spaces, special characters, etc.


5. Name some common instances of Text Preprocessing in NLP

Some common Text Preprocessing instances are:

      Removal of HTML tags,

      Removal of stop-words,

      Removal of numbers,

      Lower casing all letters,



6. List some Components of NLP

The major components of NLP are:

Entity extraction: It involves slicing a sentence to identify and extract entities, such as persons, locations, events, etc.

Syntactic analysis: It refers to the logical meaning assigned to sentences or parts of sentences. These factors and grammar rules define the correctness of the sentences.

Pragmatic analysis: This involves extracting information from external documents or queries, using linguistic and logical tools.


7. What is part of speech (POS) tagging?

It is a piece of software that reads texts in any given language and assigns parts of speech to each word, such as noun, verb, adjective, etc. Also called grammatical tagging, it uses an algorithm to categorize word terms in text bodies, corresponding to a particular part of speech, based on the definition and its context.


8. What is the difference between NLP and CI(Conversational Interfaces)?

NLP is a subset of AI technology that identifies, understands, and interprets the request of users in the language format. CI is a user interface that mixes voice, chat, and a natural language with images, videos, or buttons.

NLP focuses on what the user says in a particular concept. Conversational Interface provides a more personalized interface for users but nothing beyond that.


9. Explain Dependency Parsing in NLP

Dependency Parsing is also known as Syntactic Parsing. It is the process of recognizing a sentence and assigning a syntactic structure to it, such as the parse tree generated using parsing algorithms. Dependency Parsing is applied for tasks of grammar checking or semantic analysis.


10. What is Latent Semantic Indexing and where can it be applied?

Latent Semantic Indexing (LSI), also called Latent semantic analysis, is a mathematical method to improve the accuracy of Information retrieval. It helps discover the hidden(latent) relationship between the words(semantics) for generating insights into the topics of those words and documents.

It is generally applied to concept searching and automated document categorization on small sets of static documents. It is used in software engineering to understand source code, in publishing for text summarization, search engine optimization, and other applications.


The above is merely a sample of potential interview questions.  Learn more, take online courses, and survive the interview hot seat to land your dream job of becoming an NLP Engineer!

Lifestyle   Technology   Career   Education